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Insect-like flapping wing mechanism based
on a double spherical Scotch yoke
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We describe the rationale, concept, design and implementation of a fixed-motion (non-
adjustable) mechanism for insect-like flapping wing micro air vehicles in hover, inspired by
two-winged flies (Diptera). This spatial (as opposed to planar) mechanism is based on the
novel idea of a double spherical Scotch yoke. The mechanism was constructed for two main
purposes: (i) as a test bed for aeromechanical research on hover in flapping flight, and (ii) as a
precursor design for a future flapping wing micro air vehicle. Insects fly by oscillating
(plunging) and rotating (pitching) their wings through large angles, while sweeping them
forwards and backwards. During this motion the wing tip approximately traces a ‘figure-of-
eight’ or a ‘banana’ and the wing changes the angle of attack (pitching) significantly. The
kinematic and aerodynamic data from free-flying insects are sparse and uncertain, and it is
not clear what aerodynamic consequences different wing motions have. Since acquiring the
necessary kinematic and dynamic data from biological experiments remains a challenge, a
synthetic, controlled study of insect-like flapping is not only of engineering value, but also of
biological relevance. Micro air vehicles are defined as flying vehicles approximately 150 mm
in size (hand-held), weighing 50–100 g, and are developed to reconnoitre in confined spaces
(inside buildings, tunnels, etc.). For this application, insect-like flapping wings are an
attractive solution and hence the need to realize the functionality of insect flight by
engineering means. Since the semi-span of the insect wing is constant, the kinematics are
spatial; in fact, an approximate figure-of-eight/banana is traced on a sphere. Hence a natural
mechanism implementing such kinematics should be (i) spherical and (ii) generate
mathematically convenient curves expressing the figure-of-eight/banana shape. The double
spherical Scotch yoke design has property (i) by definition and achieves (ii) by tracing
spherical Lissajous curves.

Keywords: insect-like flapping wings; micro air vehicles; flapping wing mechanism;
spherical Lissajous curves; double spherical Scotch yoke
1. INTRODUCTION

This paper describes the rationale, concept, design and
implementation of a spatial mechanism for micro air
vehicles (MAVs) with insect-like flapping wings,
inspired by two-winged flies (Diptera). The device
focuses on the wing motion in hover and assumes a
fixed motion envelope, i.e. the envelope cannot be
adjusted once the device is assembled. The mechanism
is based on the novel idea of a double spherical Scotch
yoke, while the previous design, see Żbikowski et al.
(in press), focused on a planar mechanism, utilizing a
four-bar linkage. This work is part of a larger research
effort at Cranfield University (RMCS Shrivenham)
aimed at designing, building, testing and fielding a
flapping wing micro air vehicle, see Żbikowski
(1999a,b).
orrespondence (r.w.zbikowski@cranfield.ac.uk).
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The paper is organized as follows. This introduction
continues by motivating the design in §1.1 and defining
the design specifications in §1.2. The problem of
defining insect-like wing tip kinematics in a realistic
and practical way is then discussed in §2. Two idealized
solutions are considered: Bernoulli’s lemniscate in §2.1,
and spherical Lissajous’ curves in §2.2. It is concluded
that the Lissajous approach is more attractive and can
be realized mechanically by superposition of two
sinusoidal motions, orthogonal to each other and with
periods differing by a factor of two. A practical
realization leads to a spatial mechanism based on a
double spherical Scotch yoke, described in §3. The
planar and spherical concepts are contrasted in §3.1,
while the required drive train is presented in §3.2. The
key elements of the design are described in §4,
summarizing the stress analysis performed, presenting
the moulds used for manufacturing and outlining
the actual manufacturing of the yokes. Finally,
J. R. Soc. Interface (2005) 2, 223–235
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Figure 1. ‘Generic’ kinematics of insect in hover: the wing tip traces a ‘figure-of eight’, when seen from the insect side. The angle
between the insect body axis (green) and the stroke plane (red) is constant. Typically, (a) the angle is steep; (b) one extreme: the
angle is p/2 (see Żbikowski et al. in press); (c) the other extreme: the angle is zero (considered in this paper).
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the functioning and testing of the complete mechanism
is briefly highlighted in §5, and the conclusions follow
in §6.

1.1. Motivation and background

MAVs are defined as flying vehicles approximately
150 mm in size (hand-held), weighing 50–100 g, and are
being developed to reconnoitre in confined spaces
(inside buildings, tunnels, etc.). This requires power-
efficient, highly manoeuvrable, low-speed flight with
stable hover. Such performance is routinely exhibited
by flying insects and hence the focus on emulating
insect-like flapping by engineering means. A detailed
discussion of the future utility of MAVs and the
advantages of considering insect-like flapping wing
propulsion have been presented elsewhere, see
Żbikowski (2000, 2002a). Here, we summarize the
relevant basics of insect flight, emphasizing flapping
wing kinematics and touching upon the complex
aerodynamics involved.

Insects fly by oscillating (plunging) and rotating
(pitching) their wings through large angles, while
sweeping them forwards and backwards. The wingbeat
cycle (typical frequency range: 5–200 Hz) can be
divided into two phases: downstroke and upstroke
(see figure 1a). At the beginning of downstroke, the
wing (as seen from the front of the insect) is in the
uppermost and rearmost position with the leading edge
pointing forward. The wing is then pushed downwards
(plunged) and forwards (swept) continuously and
rotated (pitched) at the end of the downstroke, when
the wing is twisted rapidly, so that the leading edge
points backwards, and the upstroke begins. During the
upstroke, the wing is pushed upwards and backwards
and at the highest point the wing is twisted again, so
that the leading edge points forward and the next
downstroke begins.
J. R. Soc. Interface (2005)
Insect wing flapping occurs in a stroke plane that
generally remains at the same orientation to the body,
see figure 1a. The actual angle corresponding to the
orientation is an interesting design parameter, so in
Żbikowski et al. (in press) we considered the orthogonal
arrangement, i.e. the angle of p/2, see figure 1b. In this
work we focus on the parallel version, see figure 1c.

In hover—the focus of this work—the downstroke
and upstroke are equal, resulting in the wing tip
approximately tracing a figure-of-eight (as seen from
the insect’s side). However, the figure-of-eight is not
necessarily generic, as other, less regular, closed curves
with more than one or no self-intersections are also
observed (e.g. Ennos 1989; Wakeling & Ellington
1997); for two-winged flies (Diptera) a ‘banana’ shape
seems to be common. However, even for Diptera the
kinematics in hover can be more complicated, so we
settled on the figure-of-eight as ‘commonly occurring’
for reference purposes.

Since each half-cycle starts from rest and comes to a
stop, the velocity distribution of the flapping is non-
uniform, making the resulting airflow complex. It is also
unsteady, i.e. the aerodynamic force varies in amplitude
and direction during each wingbeat cycle. The varia-
bility of the force is compounded by the strong influence
of the viscosity of air (owing to the small scale) and
significant interaction of the wing with its wake (owing
to hover). The details are explained elsewhere
(Żbikowski 2002b); it is only noted here that the
expected aerodynamic loading will be time-varying
with magnitude peaks at the end of each half-cycle.

Finally, it is worth mentioning that the thorax–wing
system in true flies (Diptera) is resonant (Pringle 1975),
which contributes to the efficiency of propulsion. This
feature was not implemented in the presented mecha-
nism, but it is considered for a future design in the form
of electro-mechanical resonance.

http://rsif.royalsocietypublishing.org/
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1.2. Design specifications

Not only are insect-like aerodynamics quite complex,
but their observation and measurement in nature is
very challenging (Willmott & Ellington 1997a,b;
Willmott et al. 1997; Srygley & Thomas 2002). This
motivated the development of aerodynamically scaled
flapping mechanisms, most notably Ellington’s flapper
(van den Berg & Ellington 1997a,b) and Dickinson’s
Robofly (Dickinson et al. 1999). These devices allowed
remarkable progress in gathering experimental data on
insect-like aerodynamics (Ellington et al. 1996; Birch &
Dickinson 2001). However, they tend to be bulky
constructions not suitable for developing into light-
weight, 150 mm versions suitable for a future flapping
wing MAV.

On the other end of the scale, Fearing et al. (2000)
and Avadhanula et al. (2002) aim at building an insect-
like flapping robot weighing a tenth of a gram and with
a 25 mm wing span. This approach is based on MEMS
technology, as the expected forces (and payloads) are
below 1 g.

In contrast to these efforts, the flapping mechanism
described here was designed to the following
specifications:
–

J.
miniature mechanism, no MEMS—the final vehi-
cle is to be built on the 150 mm scale with
50–100 g weight, so the power required (a few
watts) necessitates conventional mechanical
engineering;
–
 fuselage 150 mm long and 25 mm in diameter—the
mechanism must fit into a 150!25 mm2 cylinder,
the MAV dimensions compatible with the size of the
human hand;
–
 design wingbeat frequency of 20 Hz—this is the
lower threshold of audible sounds;
–
 fixed motion—the mechanism should implement
predefined (as opposed to adjustable) kinematics of
hover, so that the motion of each wing should be the
mirror image of the other;
–
 biomimetic extraction—the mechanism should rea-
lize idealized insect-like flapping, implemented by
engineering means;
–
 test bed for aerodynamic and mechanical aspects of
flapping—the mechanism’s main function is to foster
research on aeromechanical aspects of insect-like
flapping in hover, but it should also provide a
precursor design for the final platform;
–
 durability versus weight—the need for a robust
mechanism for prolonged testing takes precedence
over weight optimization;
–
 spatial mechanism realization—use a spherical
mechanism naturally to implement the required
kinematics;
–
 stroke plane parallel to the fuselage—the wings
should flap in a plane containing the long axis of the
fuselage for ease of testing and handling, see figure 1;
–
 rotary DC motor propulsion—for ease of use and
power efficiency;
–

1The authors are grateful to Mr Salman Ansari for pointing out this
possible advantage of figure-of-eight kinematics.
low cost—where possible, the use of off-the-shelf
parts should be considered, drawing upon clock- and
watch-making and hobby industries.
R. Soc. Interface (2005)
2. IDEALIZED WING TIP KINEMATICS

As outlined in §1.1, insect wing kinematics are
essentially spherical, while the trace of the wing tip is
usually photographed from the insect’s side. The result
is an orthogonal projection of the spherical trace on to
the plane of the animal’s longitudinal symmetry. The
resulting planar figure for a hovering insect’s wing is
always closed. As far as can be discerned from the
available (noisy) data, e.g. for flies (Ennos 1989), the
actual shape may be a figure-of-eight or a banana shape,
but can be irregular and sometimes the trace has no
self-intersections. Owing to the inherent experimental
difficulties, the kinematic and aerodynamic data from
free-flying insects are sparse and uncertain, and it is not
clear what aerodynamic consequences different wing
motions have, despite notable progress (e.g. Dickinson
et al. 1998; Lehmann & Dickinson 1998; Lehmann
2004). Since acquiring the necessary kinematic and
dynamic data remains a challenge, a synthetic,
controlled study of insect-like flapping is not only of
engineering value, but also of biological relevance.

There are two phases in each half-cycle of the wing
beat: translational (wing moving forwards or back-
wards) and rotational (at the end of each stroke). In
order to clearly investigate the distinct aerodynamic
contributions of each phase, the angle of attack should
be constant during translation and rotate through at
least 908 during the flip-over. Thus, theoretically
attractive kinematics should entail an intermittent
rotational motion with reversal. A more subtle aspect is
the plunging (up–down) component of flapping. Every
time a hovering wing starts (or stops) it sheds a starting
(stopping) vortex (Wagner 1925; Żbikowski 2002b)
which is then convected according to the airflow
evolution. Despite the convection, such a vortex may
persist in the vicinity of its original shedding point
when the wing revisits that point in the next half-cycle.
Then the wing and the vortex will collide and the flow
structure is impaired. However, if the wing plunges up
and down while moving forwards and backwards, it
may be able to avoid hitting the vortex when revisiting
the shedding point. In other words, figure-of-eight
kinematics—with the width of the ‘eight’ correspond-
ing to the extent of plunging—can plausibly be
advantageous1 for aerodynamic reasons. Hence the
focus of this work has been idealized wing tip
kinematics of that type, so that the results are practical
to implement, but scientifically relevant both for
engineers and biologists.

For ease of analysis, it has been decided to
implement wing tip kinematics as a spherical, sym-
metric, self-intersecting curve, which would admit a
convenient mathematical description and a simple
engineering realization. Two options were considered:
(i) Bernoulli’s lemniscate and (ii) spherical Lissajous
curves.

http://rsif.royalsocietypublishing.org/
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Figure 2. Bernoulli’s lemniscate based figure-of eight curves:
(a) Viviani’s curve can be obtained by the stereographic
projection of the planar lemniscate of Bernoulli from the point
D; this point is the antipode of the double point of Viviani’s
curve; (b) the orthogonal projection of Viviani’s curve onto
the yz-plane is a planar figure-of eight, known as Gerono’s
lemniscate.
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2.1. Bernoulli’s lemniscate

Lemniscates are level curves of polynomials (Brieskorn&
Knörrer 1986). They are plane algebraic curves of order
2n, such that the product of the distances of each point
of the curve from n given focuses F1,.,Fn, is equal to
the nth power of the radius r. In the complex plane
notation this means

jðzKz1Þ.ðzKznÞjZ rn; z Z xC iy; rO0; (2.1)

where zi are the coordinates of the focuses Fi. A figure-
of-eight type curve will have nZ2 focuses and the
example considered was Bernoulli’s lemniscate:

0Z ðx2 Cy2Þ2 Ka2ðx2 Ky2Þ; (2.2)

ðxðtÞ; yðtÞÞZ a cos t

1Csin2t
;
a sin t cos t

1Csin2t

� �
;

t2½0;2p�;
(2.3)

with the focuses at (Kd, 0) and (d, 0), where aZd
ffiffiffi
2

p
.

The focus on Bernoulli’s lemniscate was due to: (i) its
connection with Viviani’s curve (a spherical figure-of-
eight), and (ii) its ready realization with a four-bar
linkage (see Hartenberg & Denavit 1964, p. 79;
Dijksman 1976, ch. 11).

Since the insect wing has constant span and is hinged
at the root, its tip traces a figure-of-eight on a sphere,
and the photographs register the orthogonal projection
of this spherical curve on to a plane. Bernoulli’s
lemniscate naturally generalizes to the sphere in the
simple form of Viviani’s curve (see figure 2):

xðtÞZ a cos2t;

yðtÞZ a cos t sin t;

zðtÞZ a sin t; t2½0;2p�;

9>>=
>>; (2.4)

which is the intersection of the sphere x2Cy2Cz2Za2

and the cylinder x2Cy2Zax. The lemniscate of
equation (2.3) generates equation (2.4) via a stereo-
graphic projection2 from the antipode of the double
(self-intersection) point of Viviani’s curve. Further-
more, the orthogonal projection of Viviani’s curve on
the yz-plane is Gerono’s lemniscate (Lawrence 1972,
pp. 124–126):

yðtÞZ a cos t sin t

zðtÞZ a sin t; t2½0;2p�;

)
(2.5)

as is readily seen by putting xZ0 in equation (2.4), and
corresponds to z4Ka2(z2Ky2)Z0.

Thus, in principle, if a planar mechanism generates
Bernoulli’s lemniscate, then (via a spherical joint) the
wing tip will trace Viviani’s curve, and its flat trace will
be Gerono’s lemniscate. Since all of these curves are
described by simple, closed-form formulae (2.3)–(2.5),
the kinematic analysis becomes trivial.

The crank-rocker, non-Grashof, four-bar linkage
with proportions 1:

ffiffiffi
2

p
: 1 has Bernoulli’s lemniscate
2Referring to figure 2, this means that the ray emanating from D
follows Bernoulli’s lemniscate and traces Viviani’s curve on the
sphere.

J. R. Soc. Interface (2005)
as its coupler curve (Hartenberg & Denavit 1964, p. 79;
Dijksman 1976, ch. 11). In this set-up, the centre point
of the coupler makes excursions beyond the base
endpoints. Thus, to avoid tripping on one another,
the links must be stacked up in layers, an inefficient use
of space. Even with the layered arrangement, a
protrusion from both sides of the centre point,
orthogonal to the linkage plane, would block the
mechanism’s movement. Such protrusion is needed to
drive both wings from a single mechanism. The
alternative of two mechanisms (one for each wing),
each made of links stacked up in layers, is impractical
owing to excessive complexity and prohibitive use of
space. Hence, despite its mathematical ease and
elegance, the approach was judged not feasible from
the engineering viewpoint. Also, this concept is unable
to produce banana-shaped curves.

http://rsif.royalsocietypublishing.org/
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The implementation difficulties arising from
implementation of Bernoulli’s lemniscate can be
alleviated if the classical straight-line mechanism of
Watt (e.g. Hartenberg & Denavit 1964, p. 79; Dijksman
1976, ch. 3) is considered, as we have described in
Żbikowski et al. (in press). This double-rocker four-bar
linkage produces families of curves of the figure-of-eight
type according to the link proportions chosen. Also, a
horizontally oriented linkage generates the coupler
curve orthogonally to its base, so it can be housed in a
cylindrical fuselage. Furthermore, the links will not
make excursions beyond the housing owing to the
double-rocker configuration.

While figure-of-eight lemniscates are quadrics, the
straight-line mechanism curves are sextics and do not
admit particularly convenient parametrizations
(Hartenberg & Denavit 1964; Rutter 2000). Still, a
closed form expression is available (Wunderlich 1978)
and a formula for the corresponding spherical curve can
be derived. However, it is not possible to generate
banana-shaped curves with the straight-line mechanism.
Figure 3. Spherical Lissajous curves with a single intersection
(double point). (a) A spherical figure-of-eight and its
orthogonal projections; note the ‘hour-glass’ shape of the
projection on to the plane of the longitudinal symmetry. (b) A
spherical banana trace and its orthogonal projections; the
cusps of the side projection are two-dimensional artefacts: the
spherical curve is smooth.
2.2. Lissajous curves

Since the theoretically attractive approach of §2.1
turned out to be impractical, an alternative was sought
that would provide mathematical simplicity and
mechanical realizability. A straightforward solution
was to consider the well-known Lissajous curves. They
arise by the composition of two sinusoidal waveforms in
orthogonal directions, i.e. by composing sin ut perpen-
dicularly with a sin(kutCa).

There is no standard way of generalizing planar
Lissajous curves to spatial ones. One way, useful in knot
theory (Bogle et al. 1994), is to consider

xðtÞZ sinðuxtCaxÞ;
yðtÞZ sinðuytCayÞ;
zðtÞZ sinðuztCazÞ;

9>=
>; (2.6)

which results in a wealth of three-dimensional curves.
However, a more natural approach, in keeping with the
spherical nature of the required motion, is simply to
specify orthogonal sine waves directly in the spherical
coordinates:

rðtÞZR;

qðtÞZ qmaxsin ut;

fðtÞZ aqmaxsinðkutCaÞCfoffset;

9>=
>; (2.7)

where RZconst. is the radius of the sphere and
qmax2(0,p/2) in order for the curve to be confined to a
hemisphere, while foffset should take values 0,p/2, orp to
choose the desired hemisphere. The q-sinusoid is the
referenceand thus thef-sinusoid isdefinedwith respect to
it by the constants a2(0,1], kZ1,2,. , and a2[0,p/2].

Since equation (2.7) is related to the Cartesian
coordinates in the usual way,

xðtÞZ rðtÞcos qðtÞsin fðtÞ;
yðtÞZ rðtÞsin qðtÞsin fðtÞ;
zðtÞZ rðtÞcos fðtÞ;

9>=
>; (2.8)
J. R. Soc. Interface (2005)
two-dimensional projections of the spherical Lissajous
curves are readily obtained.This is illustrated in figure 3.
It is worth noting that not only can a spherical figure-
of-eight be generated (figure 3a), but also a spherical
banana shape is possible (figure 3b).

Finally, mechanical realization of the composition of
two sinusoidal waveforms in orthogonal directions is
possible by a generalization of the classical Scotch yoke,
as described in §3 below.
3. SCOTCH YOKE MECHANISM FOR LISSAJOUS
SPHERICAL FIGURE-OF-EIGHT

As described in Żbikowski et al. (in press), we have
successfully used a planar four-bar linkage with a
spatial articulation to implement an insect-like flapping
mechanism. Therefore, a spherical four-bar linkage
seemed a natural way of progressing to a spatial design.

http://rsif.royalsocietypublishing.org/


Figure 4. Planar double Scotch yoke: (a) kinematic diagram;
(b) realistic driving method in constrained volume.
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 rsif.royalsocietypublishing.orgDownloaded from 
According to Chiang (1992), many features of planar
four-bar linkages can be observed in the case of their
spherical counterparts, or at least have appropriate
analogies. In particular, spherical linkages are capable
of generating symmetrical coupler curves (see Lu &
Hwang 1996). A symmetrical, spherical double rocker
linkage should be similar to the corresponding planar
version used in Żbikowski et al. (in press). However,
that planar mechanism was transitional (Hunt 1978,
ch. 7), i.e. it had kinematic singularities. This means
that it had an uncertainty configuration when transi-
tioning between a Grashof and a non-Grashof kin-
ematic chain. In other words, when the coupler is
momentarily collinear with another link, it can either
continue its previous motion or suddenly reverse the
direction. This mathematical singularity can lead to
surprisingly diverse coupler curves (Torfason & Ahmed
1978; Hernandez et al. 1994; Pennestri 1998).

In the case of planar four-bar linkage we overcame
this problem by the application of springs forcing the
driven rocker to the central position and appropriately
selected tolerances, see Żbikowski et al. (in press).
However, linkage had to be led between two vertical
planes to avoid uncontrolled motions in the direction
orthogonal to the linkage plane. This arrangement, or
its equivalent, would not be easy to achieve in spherical
geometry, as two concentric spheres should be used to
obtain a similar effect. Hence we concluded that, as a
solution, a spherical double rocker linkage would be too
complicated and too expensive. However, a certain
combination of spherical four-bar linkages appeared to
be feasible as a spherical flapping mechanism. Two
conic Scotch yokes and a universal joint can be used to
generate desired kinematics. Each can be interpreted as
a particular case of the spherical four-bar linkage, see
Crossley (1955).
3.1. Planar versus spherical double Scotch yoke

A spherical figure-of-eight together with decoupled
pitching is easily obtainable if each of them have a
common apex and if both Scotch yokes are orthogonal.
This combination allows the creation of Lissajous’
curves if yokes are driven by sinusoidal inputs, one
twice as fast as the other. As a result, a smooth figure-
of-eight motion can be obtained, without any excessive
accelerations, thus decreasing dynamic loads. The first
step was to propose a planar mechanism capable of
converting rotary input into reciprocal motion of the
figure-of-eight type. This was done by combining
orthogonally two Scotch yokes, so that Lissajous curves
were generated.

One of the yokes moves up and down, while the other
moves back and forth, see figure 4a. This way, two
orthogonal sine waves are produced, and if their
frequency ratio is 2 :1, Lissajous curves will be
produced. The actual shapes of the resulting figure-of-
eight curves depend not only on sine amplitudes, but
also on phase differences.

The planar double Scotch yoke can be sensitive to
manufacturing quality and can be locked, if linear
bearings are not sufficiently parallel, or owing to
asymmetric loads, if the frame is not sufficiently rigid.
J. R. Soc. Interface (2005)
It is not straightforward to drive the double Scotch
yoke in a constrained volume if symmetric forces are to
be used. In particular, the horizontal yoke has to be
driven from one side only if the mechanism has to fit
into the tube with the small diameter as required in the
case of MAV, see figure 4b.

The drawbacks of the planar double Scotch yoke,
described in §3.1, can be avoided if the yokes are
made spherical and their translation is exchanged
with their rotation. In this configuration, both ends
of each yoke are rotated about the same axis, see
figure 5a. The figure-of-eight generated is then
spherical by default, significantly simplifying wing
articulation, see figure 5b.

In figure 6, note that axle E1 is attached to frame
component A5a by two plates A5b, so that a mode of
slide bearing is created. The axle is equipped with
two universal joints for wing articulation and a lever
for pitch control. Wings can be attached to the tubes
at both axle ends. Yokes C1 and B1 are also attached
to frame component A5a, so that their axes cross in
the centre of the universal joint. The mechanism
contains two universal joints and two sets of yokes,
to which two wings are to be attached. Universal
joints cannot have a common centre, since the lever
and attachment bearings have to be located between
them.

This is the heart of the proposed flapping
mechanism.

http://rsif.royalsocietypublishing.org/


Figure 5. Spherical double Scotch yoke: (a) kinematic
diagram; (b) concept of the associated flapping mechanism,
see also figure 6.

Figure 6. Practical realization of spherical dou
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3.2. Drive train

The spherical double Scotch yoke needs to be driven
either by moments acting about its axes, or by a pair of
forces acting between axes and pins attached to yokes,
see figure 5a. Both yokes are equipped with suitable
pins and are driven by linear sliders, see figure 7.
Vertical yoke C1 is driven by horizontal slider C2, while
horizontal yoke B1 is driven by vertical slider B2. Both
sliders have slots suited to drive yokes. The pitch
controlling lever is driven by pusher E2.

As illustrated in figure 8, horizontal slider C2 is
connected to frame component A3 by a linear bearing
C4. Vertical slider B2 is placed between frame com-
ponents A5a, A1 and A2. Slider C2 is driven by crank
C3b which is part of assembly C3. Slider B2 is driven by
crank B3b which is part of assembly B3. Assemblies C3
and B3 also contain helical gears. These gears are
connected by a helical gear fromassemblyD2.Axes of all
these gears are orthogonal. Pitch diameters have the
proportions 1:1:2 (B3:D2:C3). Assembly B3 is driven
by aDCmotor through connectorD1, so that assemblies
B3 andD2 rotatewith the same velocity, while assembly
C3 rotates twice as slowly. One rotation of C3 assembly
generates a complete figure-of-eight.

Assembly D2 drives the Geneva wheel pitch reversal
generator. The Geneva wheel driver has one arm, so
that the Geneva wheel switches the pitch twice during
the mechanism cycle.

Exploded views of the complete mechanism are
presented in figure 8, and a photograph of the
assembled mechanism is given in figure 9.
4. MECHANISM ENGINEERING

The most challenging aspect of the mechanism design
was the spherical yokes.
ble Scotch yoke; for description, see text.
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Figure 7. Details of the driving components; for description, see text.
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In contrast with our four-bar mechanism (Żbikowski
et al. in press), the current design generates Lissajous’
curves and does not experience excessive accelerations.
The flapping is much smoother, so inertial loads are
relatively small and the aerodynamic loads dominate in
this case. The details of the aerodynamic loads are given
elsewhere (Żbikowski 2002b; Żbikowski et al. in press),
so here we present only the results of strength analysis.

As expected, the yokes were the most heavily loaded
parts. That was owing to small distances between axes
and driving pins and the presence of large slots.
Moreover, the yokes carry most of the load especially
for the highest considered flapping frequency of 20 Hz
and largest considered (150 mm) wing, see figure 10.
Since the maximum stress is of the order of 1200 MPa
near the driving pins, the best quality steel with
heat treatment would be required (see stress values in
figure 10). However, the yokes are quite small and have
curved, three-dimensional shape. In particular, the
horizontal yoke could be difficult to machine in such
small scale owing to the spherical character of the
internal surface. Heat treatment would make machin-
ing problems even worse and would lead to deformation
and possible cracks. Therefore, it was decided to make
yokes out of carbon–epoxy composite.
4.1. Yokes design and manufacturing

Small dimensions created manufacturing problems in
this case as well, but they were not prohibitive. The
simplest and most precise method to make the moulds
would be via rapid prototyping. Since it was not readily
available, ordering the moulds from an external
contractor was expected to be too expensive and
time-consuming. Therefore, it was decided to make
moulds for the first prototype with application of
a more classical method: the ball from a ball bearing
J. R. Soc. Interface (2005)
was used as a model of the spherical surface, see
figure 11a,b. However rapid prototyping is considered
for future designs.

Tex 1610 strands of Tenax HTA carbon fibres were
used to make the yokes, together with L epoxy resin and
L hardener from R&G for impregnation. Carbon is
known as a perfect material for friction brake blocks,
but wearing characteristics of available carbon/epoxy
compositions were not known. Moreover, one axle
surface required low friction, since it was designed as a
plain bearing, while the other required threading. That
is why it was decided to include brass sleeves into the
yoke structure, see figure 11c. One of these had an
internal diameter of 2 mm and wall thickness of
0.1 mm, a second had internal diameter of 1.6 mm
and a wall thickness 0.3 mm. Both sleeves were
installed on the axle rod at the beginning of the
manufacturing process. The strand of fibres was
impregnated out of the mould and then laid down
inside. It surrounded the sleeves and the ‘tongue’
simulating slot, see figure 12. The strand was crossed
several times in the course of the process, providing
maximum possible strength and filling the mould to the
maximum possible extent. However, small volumes
were not filled on both ends of the ‘tongue’ and in the
area close to the sleeves. These volumes had to be filled
with aerosil/epoxy composition.

After curing, the mould was opened and the yoke
was taken out. Excess material was cut and a thicker
sleeve threaded. The yoke was then ready for assembly.

The technology described above is workable, but not
simple, and it requires significant experience. Also, the
air bubbles left in the structure (see figure 11c) prove
that it is not perfect yet. Therefore, other technologies
will be considered for the future, particularly in the case
of serial manufacturing. Injecting the filaments mixed
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Figure 8. Exploded views of the complete mechanism.

Figure 9. General view of the complete mechanism.
Figure 10. Maximum stress in the horizontal yoke for the
flapping frequency of 20 Hz and a 150 mm wing.
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Figure 12. Sequence (selected frames) of laying down the carbon strand in the mould.

Figure 11. (a) Bearing ball used as a prototype of the yokes’ spherical surface together with the negative of the half-sphere made
in first phase of prototyping. (b) Vertical yoke mould components; note the metallic rod used to model the axle surfaces. (c) The
vertical yoke ready for assembly.
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with the matrix would be the best possible technology
for yoke manufacturing. However, a composition provid-
ing sufficient strength has yet to be developed. Perhaps
nanotubes composite would be optimal for this appli-
cation, but a proper matrix would have to be chosen
first. Also, the yokes’ wearing has to be studied,
particularly around the pins. Experiments conducted
so far have shown that some metallic components of the
mechanism wear out faster than the yokes’ pins.
5. MECHANISM FUNCTIONING AND TESTING

Figure 9 shows the mechanism assembled and ready for
testing. As a first step, functionality testing was
J. R. Soc. Interface (2005)
performed proving that the mechanism generally
works as required.

The only problem discovered so far was that axle E1
was built of two off-the-shelf universal joints and the
brass lever. All these three components were glued
together. Gluing appeared not to be as robust as
desired. Therefore, the axle will be redesigned or its
bonding technology changed in the future. Candidate
technologies considered are soldering or electron beam
welding.

Despite this weakness, it was possible to perform
preliminary particle image velocimetry (PIV) flow
measurements. A stereoscopic PIV system was used
in which two imaging cameras photographed a common
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Figure 13. Stereoscopic PIV system used for flow visualization and to verify the figure-of-eight kinematics, see figure 14.

(a) (b)

Figure 14. Comparison of (a) the mechanically realized figure-of-eight with (b) the theoretical plot of the designed shape, seen
from approximately the same perspective, see also figure 3.

Insect-like flapping wing mechanism C. Galiński and R. Żbikowski 233
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measurement area illuminated by a pulsed laser. This
set-up allowed inference of the third (out of plane)
velocity component from observation of the plane
defined by the sheet of laser light, see figure 13.

As a by-product of the collected aerodynamic data it
was possible to verify the figure-of-eight shape pro-
duced by the mechanism, see figure 14. Figure 14a was
created by combining several subsequent frames from a
single camera. It shows the path created by the
intersection point of the light sheet and wing axis of
rotation; subsequent wing sections are also visible.
Figure 14b is a theoretical plot of the designed path
seen from approximately the same perspective as in
figure 14a. This comparison of the assumed spherical
Lissajous curve and its mechanical realization demon-
strates correctness of the design.

PIV experiments were performed in a cumulative
time of approximately 1 h, without any failures. This
result is quite satisfactory, since experiments provided
useful aerodynamic data and 1 h is approximately the
required time of robust functioning of the mechanism.
6. CONCLUSIONS

The kinematics of an insect-like flapping wing for
MAVs requires three-dimensional motion which is
essentially spherical in character. Spherical double
Scotch yoke is a relatively simple mechanism, comply-
ing with this requirement and realizing the required
figure-of-eight as a spherical Lissajous’ curve.

The spherical double Scotch yoke mechanism on the
MAV scale was designed, manufactured, assembled and
tested. It was found to be quite reliable and met its
specifications, performing satisfactorily in tests and
generating useful data for further aeromechanical
studies. The few problems discovered in the course of
the testing are minor and can be resolved by viable
modifications.

Initial aerodynamic data have been gathered and
more tests, both for force measurement and flow
visualization, are planned. The new data will allow a
quantifiable study of the aeromechanics of insect-like
flapping at the MAV scale. It will also generate
information of value for the analysis of insect flight,
where similar experiments are difficult to perform.
Finally, the progress in understanding of the aero-
mechanics of insect-like flapping wings will be used to
gain additional insights into the flight of real insects.
Thus, an engineering study inspired by nature will
contribute to a better understanding of nature which, in
turn, can be used to further progress the engineering
design. This fruitful cycle seems to be a good and
practical example of the real value of the interface
between engineering and biology.
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